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Quantization Conditions in Curved Spacetime and
Uncertainty-Driven Inflation
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An alternative inflationary model is proposed predicated upon a consideration
of the form of the uncertainty principle in a curved background spacetime. An
argument is presented suggesting a possible curvature dependence in the correct
commutator relations for a quantum field in a classical background which cannot
be deduced simply by extrapolation from the flat spacetime theory. To assess the
possible consequences of this dependence, we apply the idea to a scalar field in
a closed Friedmann–Robertson–Walker background, using a simple model for
the curvature dependence (along the way, a previous erroneous result obtained
by Bunch for the adiabatically expanded wave function is corrected). The result
is a time-dependent cosmological constant, producing a vast amount of inflation
that is independent of either the mass of the matter field or its effective potential.
Furthermore, it is seen that the field modes are initially zero for all wavelengths
and come into being as the universe evolves. In this sense, the universe creates
its contents out of its own expansion. At the end of the process, the matter field
is far from equilibrium and essentially reproduces the initial conditions for the
New Inflationary Model.

1. INTRODUCTION

In the absence of a consistent and finite quantum field theory of gravity,
it has been fashionable in recent years to treat gravity classically and every
other field quantum mechanically. The hope, of course, has been to see
through the backreaction of the matter field on the geometry some sort of
quantum behavior in the gravitational field. One might thereby gain some
insights into the nature of a quantum gravity and see through a fog some of
the properties it might possess. The remarkable successes of inflationary
models (Guth, 1981; Linde, 1982, 1986a) and the intriguing suggestion of a
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connection between gravity and thermodynamics (Hawking, 1975) perhaps
point the way, albeit murkily, to a synthesis of quantum mechanics and
general relativity (it should be noted in the latter case, however, that the
significance of this connection has been called into question; Pringle, 1989).

All of these attempts at doing quantum field theory in a curved back-
ground rest upon an unspoken assumption regarding the proper way of doing
the quantum mechanics of particles in that background. In flat spacetime the
particle commutator relation is

[xm, pn] 5 i"hmn (1.1)

In the continuum limit, this leads naturally to the scalar field commutator

[f(xm), p(x n)] 5 i"d(xm 2 x n) (1.2)

Everyone is familiar with the argument leading to this result, as it appears
in every relativistic quantum mechanics text, so it will not be repeated here
(see, e.g., Itzykson and Zuber, 1980). It is generally believed (though spelled
out explicitly in few places) that the proper way of translating this formalism
to a curved background is to make the minimal substitution

hmn → gmn (1.3)

which leads in the end to the same scalar field commutator.
There would seem to be a potentially serious flaw in this argument. The

particle commutator is simply the mathematical realization of the position–
momentum uncertainty relation, this latter being the fundamental physical
principle. In light of the uncertainty relation, we are not permitted to think
of particles as mathematical points, but must consider them as being spread
out over a volume (this problem is even more acute in the continuum limit,
where each field mode is defined as a momentum eigenstate on a substantial
patch of the spacetime). This calls into question the minimal substitution (1.3)
since it implicitly regards the quantum behavior of a particle as depending only
on the value of the metric at the center of that volume and not on how the
metric is changing across the volume. It might be argued, then, that the
correct substitution would be

hmn → f (R)gmn (1.4)

where f (R) is a function of one or another of the various curvature tensors,
may be operator-valued, and goes to one in the flat spacetime limit. This
would lead to the scalar field commutator

[f(xm), p(x n)] 5 i"f (R) d(xm 2 x n) (1.5)

This commutator makes a certain amount of sense. A field is, after all, an
inherently nonlocal quantity and one might expect its quantum behavior in
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a curved background to depend on nonlocal geometric quantities such as
curvature. Whichever commutator one wishes to view as the most fundamen-
tal, field or particle, the other must be obtainable as a limiting case and so
a curvature dependence would seem inescapable. At any rate, the possibility
of a curvature dependence cannot be dismissed out of hand in an extrapolation
from flat to curved spacetime.

As it happens, it is completely equivalent to absorb the factor f (R) into
the equations of motion. The modified particle commutator relation is

[xm, pn] 5 i"f (R)gmn (1.6)

which may be accomplished through modification of the momentum operator

pm 5 2i"f (R) ¹m (1.7)

It might be questioned whether this operator is still the generator of
spacetime translations. It is, as may easily be seen by the usual method of
expanding a displaced wave function in a Taylor series:

c(x 2 d) 5 c(x) 2 dc8(x) 1
1
2

d2c9(x) 1 ??? 5 expF2d
d
dxGc(x) (1.8)

The generator of spacetime translations is the derivative operator, which,
because of its form, is usually identified with the momentum operator by
dividing out a factor of ". We may still do this if we instead divide out a
factor of "f,

2d
d
dx

→ id
p
"f

(1.9)

We must begin with a relativistically covariant wave equation such as
the Klein–Gordon equation for a scalar field (we will develop an action
principle later, though one could logically start at either point). We obtain the
modified form of this equation by the substitution of (1.7) for the momentum
operator into the invariant length of the momentum four-vector, allowing the
resulting operator to act on f (the correspondence principle):

pmpm 5 E 2 2 .p.2 5 2m2 → ▫f 1
1
"f

(¹m f )(¹mf) 1
m2

"f 2 f 5 0 (1.10)

For this differential equation to possess a Green function, it must be possible
to write it in self-adjoint form, in which the differential operator has the form

$ 5 ¹m(q(x) ¹m) 1 r(x) (1.11)

where q and r are differentiable functions. This is easily done for our modified
Klein–Gordon equation, which acquires the form
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¹m("f ¹m)f 1
m2

"f
f 5 0 (1.12)

The modified Klein–Gordon equation (1.12) has a conserved current
density which may easily be verified to be

Jm 5
"f

2im
(f* ¹mf 2 f ¹mf*) (1.13)

leading to the scalar product formula

^f, u& 5 2i #
S

(2gS)1/2f (f*
}

mu) dSm (1.14)

where S is a spacelike surface of simultaneity and dSm 5 nmdS, nm being
a unit timelike vector orthogonal to S. The definition of a Hermitian operator,
in light of this scalar product formula, must therefore be slightly adjusted to

^f, 2u& 5 [f, 2f u] 5 [2f f, u] 5 ^2f, u& (1.15)

where [ , ] designates the standard scalar product formula [for the Klein–
Gordon field, equation (1.14) without the factor of f in the integrand]. The
factor of f must always be grouped to the right of the operator 2 and this
grouping must also be observed when taking the matrix elements of an
operator. If one substitutes equation (1.7) for the modified momentum operator
into this expression for the scalar product, it is easy to verify by integration
by parts that it is Hermitian.

This paper does not purport to be a complete exegesis of the above
ideas. Rather, it should be regarded as a preliminary study designed to ascer-
tain whether the modified quantum field theory is internally and externally
consistent and to discover at least qualitatively the sort of effects which might
be expected to follow from it. The model which we choose to study is dictated
by these requirements and by the necessity that it be analytically tractable
(though we do choose a model that is at least qualitatively reasonable). There
are many investigations to which the modified theory might be appropriate.
A study of the naked singularity problem at the endpoint of black hole
radiation is a possibility. Another, and the one which we pursue, is a cosmolog-
ical investigation of the consequences of a modified field theory in the very
early universe. We obtain an inflationary theory which can use any scalar
field (and very likely any field at all, scalar or not) as the inflaton, and may
have any coupling to other fields as well. Along the way a few surprises will
result, such as the automatic vanishing of the cosmological constant.

A word on notation: Units are G 5 " 5 c 5 1 unless otherwise stated
or clearly implied by their presence in the equations. The rubrics SQFT and
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MQFT refer to, respectively, standard quantum field theory (without f ) and
modified quantum field theory (with f ). We use the (222) sign convention
in the terminology of Misner et al. (1973), with the metric signature being
(1222).

2. MODE SOLUTIONS FOR THE KLEIN–GORDON EQUATION
IN A CLOSED RADIATION-DOMINATED FRIEDMANN–
ROBERTSON–WALKER METRIC

We choose this background model as one which is thought to fairly well
represent the early universe. The line element, expressed in terms of the
conformal time parameter, is

ds2 5 C(h)Fdh2 2
dr 2

1 2 kr 2 2 r 2 du2 2 r 2 sin2u df2G (2.1)

where

C 1/2(h) 5 a* sin h

0 # h # p (beginning to end of universe)

a*2 5
8prro ao

4

3

ao 5 current value (2.2)

What to choose for f ? There are a number of possibilities. It would
seem likely that under extreme conditions the universe would if anything
become more, rather than less, quantum mechanical and so it would make
sense to choose a monotonically increasing scalar function of the curvature.
Possibilities include functions of R, RmnRmn, or RmnlrRmnlr. The first of these
is undesirable since it vanishes in empty space in a Friedmann–Robertson–
Walker metric. The other two are dependent on fourth or higher powers of
the time and end up yielding field equations that cannot be solved. We face
the choice, then, of doing a numerical solution of a realistic f or compromise
by making an analytically tractable choice that at least qualitatively reflects
the behavior of a realistic f. This compromise choice would make it easier
to see what was going on in the theory and it seems logical as a first step.
Our choice should then have only a time dependence (in our coordinate
system), as do the other choices, but of a lower power to make solution of
the field equations feasible. We will use
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f 5 expF2
Rmn nmnn

Ro
G (2.3)

where nm is a unit timelike Killing vector and the minus sign arises due to
our choice of metric signature. This expression is not generally covariant,
but that is important only to the level that the results depend on our choice
of Killing vector. Basically, all we are requiring with this choice is the
existence of a timelike vector field at all points and times. As our goal is a
qualitative assessment of the features of the theory, this seems like a reasonable
compromise, at least insofar as it provides a reasonable behavior for f and
will allow us to work out the analytical bugs and see what sort of results
should fall out of a theory such as this one. Later work can then probe more
closely into possible f ’s that are more likely.

The constant Ro is undetermined, but must have units of curvature (i.e.
[distance]22). The only natural constant hanging around out of which to
construct Ro is the Planck length

Ro 5 l22
P (2.4)

and this is what we shall usually assume. It happens that there are no current
cosmological observations which can be used to pin down Ro with any
precision. At any rate, our choice for Ro necessarily implies that we need
only investigate very early times in the history of the universe.

The Klein–Gordon equation and its associated Lagrangian are

▫f 1
1
f

(¹m f )(¹mf) 1
m2

f 2 f 5 0

(2.5)

+ 5
1
2

(2g)1/2Ffgmnf;mf;n 2
m2

f
f2G

where the middle, friction-like coupling between matter field and curvature
means that the matter-energy tensor in isolation is not conserved, but, as we
shall see, enables a wholesale transfer of energy between the matter and
gravitational fields. This will give rise to a variety of fascinating conse-
quences. For our choice of metric and f, only the time derivative survives in
this term. The timelike component of the Ricci tensor in our model is

R00 5 2
3

sin2h
(2.6)

The modified Klein–Gordon equation for field normal modes w in general
cannot be solved. It is, however, soluble in the limit of very early times,
when it becomes
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▫w 2
1

CRo

6
h3 w,0 1 m2w expF2

6
Roh2G 5 0,

where f 5 o
l

(alwl 1 al
†wl*) (2.7)

This equation may be solved by separation of variables w 5 Z(x)T(h). The
spatial part is

Z(x) 5 sinlx C l11
n2l(cos x)Y m

l (u, f) (2.8)

where the Y ’s are spherical harmonics, the C’s are Gegenbauer or ultraspheri-
cal polynomials, and the change of radial coordinate

r 5 sin x (2.9)

has been made. This part of the solution is of little interest for our current
purposes as we seek information about the time evolution of the universe.

The time part may also be solved fairly easily. First of all, change the
independent variable to

u 5 1/h (2.10)

and the time part of the field equation satisfies

T 9 1 auT8 1 1 k
u4 1

m2

u6 exp(2au2)2T 5 0

with

a 5
6
Ro

, m 5 ma*, and k 5 n(n 1 2) (2.11)

At early times (large u) the last term in this equation may be neglected and
it becomes soluble, after factoring out the SQFT solution, in terms of an
error function:

T(h) 5 e2ikhFerf1b
h2 2 1G, b 5 !a

2
(2.12)

This solution possesses a number of intriguing properties, not the least
of which is that it vanishes at time zero for all field modes. While the exact
expression for this solution depends, of course, on the form chosen for f (R),
its qualitative behavior does not. So long as f is taken to be a monotonically
increasing function of the curvature, T will vanish at early times. The matter
field has only a potential existence at the beginning of the universe.
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The growth of T from nothing to something poses a bit of an interpreta-
tional difficulty as well since it obviously implies that probability is not
independently conserved in the matter field. This means that the wave function
is not generally normalizable. ^f.f& is found to be time dependent and so
cannot be absorbed into the definition of f. This fact lies at the root of the
nonconservation of the matter-energy tensor which will be described later
and is obviously due to the nonlinear coupling between matter and gravita-
tional fields. Again, it does not seem to depend in detail on the nature of f
and embodies a sort of “transference of probability” from one field to the
other. The matter field grows at the expense of the gravitational field and it
is only a combination of the two that satisfies a conservation principle.

3. REGULARIZATION AND RENORMALIZATION IN THE
EFFECTIVE ACTION

The presentation given here largely follows the standard development
(see, e.g., Birrell and Davies, 1982, for a summary) with a few deviations
caused by the presence of f. Consequently, we shall not spend a great deal
of time on the formal manipulations, but content ourselves with giving a
broad outline of the procedure and indicating the major differences.

The basic idea is to find the backreaction of the quantum matter field
on the gravitational field by replacing the classical energy tensor in the
Einstein field equation with the expectation value of the corresponding quan-
tum operator,

Rmn 2 1–2 Rgmn 1 LBgmn 5 28pGB^Tmn& (3.1)

^Tmn& will, of course, prove to be infinite, as are most of the interesting
quantities in quantum field theory. However, it shall be possible to absorb
these infinities into the definitions of the gravitational coupling constants LB

and GB, along with a couple of others to be introduced later. The devil, as
usual, is in the details.

Tmn can be obtained from variation of the matter action Sm with respect
to the metric. We seek an effective action W which yields the expectation
value ^Tmn& in the same way

^Tmn& 5 2
2

(2g)1/2

dW
dgmn (3.2)

As it happens, this is ultimately given in the usual fashion by the Feyn-
man propagator
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W 5 21 i
22 Tr[ln(2GF)] 5 # (2g(x))1/2 Leff d nx (3.3)

Leff 5
i
2

lim
x→x8 #

`

m2

1
f (x)

GF(x, x8) dm2 (3.4)

Obtaining an expression for GF is enormously involved and could be the
subject of a paper in itself—which in fact it has been. Interested readers
should try to reproduce the local momentum-space derivation not given by
Bunch and Parker (1979) in their paper on the subject. The algebra is hair-
raising. In terms of a proper time integral, the result is

GF(x, x8) 5 2
iD1/2(x, x8)

(4p)n/2 #
`

0

i ds (is)2n/2

3 expF2
ism2

f
1

s
2isfGF(x, x8; is) (3.5)

where s is half the geodesic distance from x to x8, D is the Van Vleck–Morette
determinant, n is the dimensionality of the spacetime, and

F(x, x8; is) 5 a21(x, x8)(is)21 1 ao(x, x8) 1 a1(x, x8)(is)

1 a2(x, x8)(is)2 (3.6)

The a’s are given by

a21 5 2
1
4

sa f;a
s
f 2 2

1
12

f;abs;as;b s
f 2

a0 5 1 2
1
4

fa
f

s;a 2
1
6

i
fab

f
s;as;b 2

1
12

fab

f
s;as;b 1

1
12

s
fll

f 2

a1 5
f
6

R 2
1
2

s;a1 f
6

R;a 1
m2f;a

f 2 2 2
1
3

aabs;as;b 1
1
12

fll

f

a2 5
1
2 1 f

6
R2

2

1
1
30

▫R 1
m2fll

6f 2 2
f

180
RabRab 1

f
180

Rabld Rabgd

aab 5
f

12
R;ab 1

m2fab

2f 2

2 f 12
1
30

Ra
lRlb 1

1
60

Rk
a

l
bRkl 1

1
60

Rlmk
aRlmkb
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2
1

120
R;ab 1

1
40

▫Rab2 (3.7)

The major difference between this and the usual result, aside from the factors
of f scattered everywhere, is the presence of the a21 term, which is not present
in the usual expansion. This would seem at first glance to give us a divergence
at the lower end of the proper time integral (3.5). However, this expansion
is only valid for x in an infinitesimal neighborhood of x8 and at the end of
the renormalization we shall take the coincidence limit x → x8. In this limit,
a21 and all its relevant derivatives vanish, so the integral is finite. It remains
simply to determine which terms diverge in the coincidence limit x → x8
and absorb them into an appropriate gravitational coupling constant. This
means, in four dimensions, the terms ao, a1, and a2. We can regularize the
expression for Leff by analytically continuing the dimensionality n into the
complex plane where, so long as n Þ 4, all terms are finite. The coincidence
limit of the a’s may then be taken. The divergent part of the effective
Lagrangian is then

Ldiv 5 2
1

2(4p)n/2 F 1
n 2 4

1
1
2 1g 1 ln1m2

fk222G
3 F1m2

f 2
2

4ao

n(n 2 2)
2 1m2

f 2 2a1

n 2 2
1 a2G (3.8)

where g is Euler’s constant and results from the expansion of a gamma
function to order n 2 4 so as to capture all the potentially divergent terms.
The k is a mass rescaling factor intended to keep the units of Leff the same
regardless of n; k → 1 as n → 4.

Part or all of each of these terms may be absorbed into an appropriately
modified bare gravitational Lagrangian

Lbare
g 5

1
16pGB

(R 2 2LB) → 21A 1
LB

8pGB
2

1 1B 1
1

16pGB
2R 1 C (3.9)

By collecting like powers of the curvature out of the ai (A contains zeroth
power, B the first power, and C the second), we can obtain the renormalized
gravitational coupling constants. The presence of terms of second order in the
curvature (C) means that we must add quadratic terms to the bare gravitational
Lagrangian to cancel them out. This is the case even in SQFT, but there are
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rather strict observational limits on the magnitude of these terms (Stelle 1977,
1978; Horowitz and Wald 1978) and they can presumably be renormalized
to zero. Similarly, B can be absorbed into the gravitational constant G. Again,
there is no difference with the usual development other than some spacetime
dependence in the divergent factor being removed. L, however, presents an
interesting problem.

The renormalized cosmological constant is given by

L 5 LB 1
32pm4GB

(4p)n/2 n(n 2 2)
1
f 2 H 1

n 2 4
1

1
2 Fg 1 ln1m2

fk22GJ (3.10)

There are, in fact, two ways to obtain a finite L from this expression. One
is to assume that LB is a divergent function of spacetime that exactly cancels
the second term in equation (3.10), leaving a finite result behind. The other
is to take LB to be an infinite (in the n 5 4 limit) constant which is just
sufficiently large to cancel out the divergence, but leave the spacetime depen-
dence behind. This cannot be done with any of the other divergent terms.

One could argue that all three terms should be treated the same mathemat-
ically. On the other hand, L is unique in that it has an intimate connection
with the vacuum state energy of the matter field, from which the f-dependent
terms are arising. Discarding it entirely would imply that this connection is
of little physical consequence, whereas such phenomena as the Casimir effect
point quite emphatically to the contrary. It is our opinion that renormalization
is a mathematical procedure, not a physical imperative; there is no self-
evident “Law of Renormalization.” For one thing, no one can tell us in
advance when we would have to apply it. For some theories (not all), we
can use this procedure to sweep embarrassing infinities under the rug long
enough to extract meaningful predictions. Surely some day we shall have a
theory which is finite from the beginning, but until such time we will stick
with the physics first. A physical argument had led to the appearance of
spacetime-dependent terms in the gravitational coupling constants. Some of
these terms are divergent. We will make the minimum adjustments necessary
to remove the infinities (this is the only renormalization principle which
makes sense to us) and leave as much of the spacetime dependence behind
as we can. It would seem to us that anything more would be inconsistent
with the physical importance of L.

Solve equation (3.10) for LB by evaluating the equation today, when
f 5 1. Let Lo be todays value (presumably zero, but in any case only a
rescaling constant). Using the resulting value for LB in (3.10) and simplifying
gives (in four dimensions)

L 5
3
2

m211 2
1
f 22 (3.11)
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The remaining linear and quadratic terms are removed in the usual way (see
Birrell and Davies, 1982, for details).

This is not quite the whole story, as may be seen by contemplating the
energy tensor obtained from variation of the matter action

S 5 # (2g)1/2 1
2 1fgabf;af;b 2

m2

f
f22 d nx (3.12)

which will give

T mn 5 2
1
2

gmn1ff;af;a 2
m2

f
f22 1 ff;mf;n 2 Amnab

;ab

2 Aabmn
;ab 1 2Amanb

;ab (3.13)

where

Aabst 5 2
f

2Ro
1f;gf;g 1

m2

f
f22na nb gst (3.14)

The divergence of this energy tensor at early times is

T mn
;n 5 2

1
2

f ;m1f;af;a 1
m2

f
f22 (3.15)

which is manifestly nonzero.
Nonconservation of Tmn is not necessarily unexpected nor is it necessarily

a bad thing. The Lagrangian (2.5) is formally analogous to that for a problem
such as a rocket with a time-varying mass. We would not in that case expect
the energy of the rocket to be conserved for we would have neglected that
energy carried off by the reaction products. Furthermore, we know that T mn,
as a consequence of Noether’s theorem, is conserved only if the Lagrangian
is translationally invariant. Since f is curvature dependent, this translational
invariance is broken. Lastly, recall our mode solutions (2.12), which are
initially zero. How could something which does not initially exist but does
later on possibly have a conserved T mn? Evidently, energy is being pumped
in wholesale from the gravitational field as the matter field is being created
and only the sum of the two can possibly be conserved.

This is not in fact a new problem. DeWitt (1975) pointed out that in any
nonstationary spacetime it is impossible to define a T mn that is simultaneously
normal ordered in both the “in” and “out” regions, has matrix elements which
are smooth functions, and has a divergence which vanishes everywhere.
According to DeWitt, the correct procedure is to give up the normal ordering
and use a subtraction procedure that respects the conservation equation
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T mn
;n 5 0 (3.16)

This will require a modification of the standard subtraction procedure, as we
shall have to show that the nonconserved part of T mn can be absorbed into
the renormalized coupling constants along with the infinite parts. We will
postpone the demonstration of this until the next section, as it requires an
expression for f in terms of the curvature, which will be given by the
adiabatic expansion. However, we should point out now that carrying out
DeWitt’s prescription will require the addition of a geometric counterterm,
and one more coupling constant, in the Einstein equation. Define the auxil-
iary tensor

tmn
;n 5 T mn

;n (3.17)

as the nonconserved part of T mn (obviously there is some gauge ambiguity
in this definition). The first three terms of tmn contribute to the renormalized
form of L, G, and the quadratic coupling constant mentioned above. The
remaining terms in the expansion of tmn require the additional counterterm.
There is no contribution to this extra counterterm from the conserved part
of ^T mn&, as it has no divergence factors higher than quadratic order in the
curvature. Hence, the new counterterm and its coupling constant are deter-
mined entirely by tmn. Unfortunately, we cannot give a closed expression for
this counterterm, as we shall have at our disposal only an iterative expansion
of the wave function to employ in evaluating tmn. Nevertheless, the terms
are purely curvature dependent, justifying a counterterm on the gravitational
side of the equation, and a finite number of iterations serves to determine
the new coupling constant since no other factors will make a contribution of
higher order than quadratic.

The term tmn also has lower order terms and these will make contributions
to the usual constants, especially L. We can make two arguments here. For
one, if it is possible to retain the spacetime dependence in L, then we should,
for the same reasons as given before. For another, unless we remove all of
tmn we have not truly followed DeWitt’s prescription and have left some of
the nonconserved part behind. On Mondays, Wednesdays, and Fridays we
believe one of these. On Tuesdays, Thursdays, and Saturdays we believe the
other. On Sundays we watch the birds. To allow this paper to be read through-
out the week, we shall include a parameter l that can be set equal to one or
zero (or if you tilt your head a bit, viewed as a bird) depending on whether
the reader wishes to entirely remove tmn or not.

Using the mode solutions given in Section 2, we can approximately
integrate equation (3.17) at early times



1656 Camp and Safko

tmn '
a

2h6 exp1 a
2h22gmnf2 (3.18)

which is derivable from the action

St 5 # (2g)1/2F a
2h6 exp1 a

2h22f2G d 4x (3.19)

The semiclassical Einstein equation is as before except that instead of ^T mn&
on the right hand side, we have ^T mn 2 tmn&. The renormalization procedure
is essentially unchanged, simply including the effective Lagrangian for tmn,

Lt 5 i
a

2h6 exp1 a
2h22 lim

x→x8
GF (x, x8) (3.20)

which has divergent part

Ldiv
t 5 2

a
(4p)n/2h6 exp1 a

2h22 H 1
n 2 4

1
1
2 Fg 1 ln1m2

fk22GJ
3 1m2

f

2ao

2 2n
1 a12 (3.21)

From here it is simply a matter of churning through the algebra to find the
new expression for L,

L 5 Lo 1
3
2

m4

3
1 2 (1/f 2) 2 l(2a/m2)[(1/ho

6) exp(a/2ho
2) 2 (1/fh6) exp(a/2h2)]

m2 1 laf (1/h6) exp(a/2h2)
(3.22)

in four dimensions with the subscript “o” denoting today’s values and l
being the aforementioned constant, which may be set equal to 0 or 1 depending
on how much of tmn one wishes to banish. In the former case, the previous
expression, (3.11), is recovered.

If l 5 0, then L starts at a very large value (3m2/2) and decreases
smoothly to Lo. If l 5 1, then at about the Planck time, L rises from Lo to
a very large value and then decreases smoothly to Lo again. In other words,
there is not a great deal of practical difference between the choices. However,
note that in previous inflationary models, the current smallness of L has been
a bit of a puzzle. Here, it is a necessary consequence of the theory. The
vacuum energy density itself will also be seen to vanish.
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Though we now have expressions for the renormalized coupling con-
stants, unfortunately, we do not know enough about the renormalized Lagran-
gian to functionally differentiate it and obtain an energy tensor. The reason
is that we only have an asymptotic expansion for the Feynman propagator
and that is simply not accurate enough. The energy tensor must be
attacked directly.

4. REGULARIZATION AND RENORMALIZATION IN THE
ENERGY TENSOR

There are a variety of methods for systematically isolating the finite
parts of T mn directly. The method which we shall employ, which is especially
suited to the Friedmann–Robertson–Walker metric, is known as adiabatic
regularization (Parker and Fulling 1974; Fulling and Parker 1974; Fulling
et al., 1974). Equivalence to renormalization of the gravitational coupling
constants by dimensional regularization was demonstrated by Bunch (1980).
As discussed in these papers, the term “adiabatic order” refers to the number
of derivatives of the metric involved. In the following, we will use the notation

D 5
Ċ
C

, F 5
ḟ
f

, Vk
2 5 k2 1

Cm2

f 2 (4.1)

The adiabatic expansion of the wave function is essentially a WKB
expansion in the time part of the differential equation, which of course
assumes T(h) is slowly varying. We must therefore factor out the error
function part and perform an expansion of the remaining bits,

T 5 Ferf1!a
2

1
h2 2 1GC21/2x (4.2)

Call the term in square brackets To. Making this change, the time part of the
equation of motion becomes

ẍ 2 Fẋ 1 (vk
2 1 1–2 DF 2 1–2 Ḋ 2 1–4 D2)x 5 0 (4.3)

It appears, incidentally, that Bunch (1980) made a minor error at this point.
While it is true that

1–2 Ḋ 1 1–4 D2 ' 0

at early times, this is not true in general and the term should not therefore
be omitted as he did. Perform the WKB expansion on this equation

x 5
1

(2W )1/2 expF2i #
h

W(h8) dh8G (4.4)

and find that W satisfies
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2
Ẅ
2W

1
3
4

Ẇ 2

W 2 2 W 2 1 F
Ẇ
2W

1 iFW 1 Vk
2

1
1
2

DF 2
1
2

Ḋ 2
1
4

D2 5 0 (4.5)

This may be written as a recursion relation for W,

W 2
n11 5 2

Ẅn

2Wn
1

3
4

Ẇ n
2

Wn
2 1 F1 Ẇn

2Wn
1 iWn 1

1
2

D2
1 Vk

2 2
1
2

Ḋ 2
1
4

D2 (4.6)

It is not difficult, though it is enormously tedious, to iterate the solution
of this equation to fourth order. It is understandable, then, that Bunch (1980)
would have made some algebraic errors in the SQFT version. We had the
advantage over him in the subsequent development of symbolic manipulation
computer programs and this iteration has been performed both by hand and
by MAPLE. The corrected result is

Vk 2
1
8

Cm2

Vk
3f 3 (D2 1 Ḋ) 1

5
32

C2m4

Vk
5f 4 D2W 5

1
1
32

Cm2

Vk
5f 2 ( D

…
1 6D2Ḋ 1 4DD̈ 1 D4 1 3Ḋ2)

2
1

128
C 2m4

Vk
7f 4 (28DD̈ 1 19Ḋ2 1 122D2Ḋ 1 47D4)

1
221
256

C 3m6

Vk
9f 6 (ḊD2 1 D4)

2
1087
2048

C 4m8

Vk
11f 8 D4 2

1
128Vk

3 . (D4 2 8Ḋ˙̇ 2 4D
???2 1 4ḊD2 2 8DD̈) .

2
1

8Vk

1
2

Cm2

Vk
3f 2 (4DF 1 3Ḟ)( . D2 1 2Ḋ . 2 2DF ) 1

2
5
8

C 2m4

Vk
5f 4 DF 1

1
2

iF

2
1
64

Cm2

Vk
5f 2 . (10D2Ḋ 2 6DD̈ 1 3D4 1 6Ḋ2) .
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1
25
256

C 2m4

Vk
7f 4 . (D4 1 2D2Ḋ) . (4.7)

The boxes set off terms arising from the factors previously neglected by
Bunch, see footnote to equation (4.3). The underlined term differs from that
given by Bunch by a numerical factor and appears to have been an algebraic
error. The corrected version of Bunch’s SQFT result can be obtained from
this one by setting f 5 1.

We can now resolve the discussion that was hinted at in the paragraphs
following equation (3.17) regarding the subtraction of tmn. Recall that the
subtraction procedure we utilize involves the removal of finite terms in tmn

corresponding to the nonconserved part of the energy tensor. tmn is propor-
tional to f2 and therefore contains only even adiabatic orders. Both ^T mn 2
tmn& and ^tmn& contribute to the zeroth-, second-, and fourth-order adiabatic
terms in the Einstein equation, resulting in renormalization of, respectively,
L, G, and a third constant A associated with quadratic terms. Only tmn

contributes to sixth- and higher order terms, uniquely defining all the counter-
terms necessary to cancel it out, which are up to a constant simply those
obtainable from continuation of the adiabatic expansion of f and therefore
are purely geometric. Furthermore, since only tmn contributes to sixth- and
higher order terms, only one additional coupling constant, call it B, need be
used which is uniquely determined by the sixth-order term in the expansion
of tmn: B is whatever is necessary to eliminate the sixth-order term. It will
then necessarily eliminate all higher order terms as well.

Define the conserved energy tensor tmn 5 T mn 2 tmn. Due to the symme-
tries of the Friedmann–Robertson–Walker cosmology, the driving term in
Einstein’s equation is ^too&, so we concentrate on its form [see Fulling et al.
(1974) for this expression]

^too& 5

K# d 3x (2gS)1/2 tooL
# d 3x (2gS)1/2

5
1
2

^ f ( f;o)2& 2
1
2 Kff ¹2f 2

m2

f
f2L 2

a
2 KfC

h6 f2L (4.8)

Here, S is a spacelike hypersurface on which expectation values are to be
evaluated and we have employed (3.18) and (3.13) for tmn and T mn,
respectively.

Now we can expand f in terms of the field modes previously obtained
(Section 2)
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f 5 o
l

(alwl 1 al
†wl*) (4.9)

where the raising and lowering operators, due to the absorption of f into the
definition of the canonical momentum, satisfy the usual commutator relations.
To a good approximation, the mode sum can be replaced by an integral and
shown to be essentially of the time part of the field modes (Fulling et
al., 1974). Employing the equations of motion to simplify the integral, we
ultimately find that the vacuum state expectation value is

^too& 5
To

2

4p2C
$2 # dm(k) .x.2 e2sk (4.10)

where the exponential is the usual regulator function to make the integral
finite (eventually we take the limit s → 0), the differential operator is
defined by

$2 5
f
4

h
2 2

ḟ
4

h 1
1
4

Dḟ 1 f1s
2 1

Cm2

f 2 2 2
afC
2h6 1

m2

f
(4.11)

and for the Friedmann–Robertson–Walker cosmology, * dm(k) → Sk k2.
So far, no adiabatic approximation has been made. What we do now is

evaluate this regularized expression using the exact wave functions, do the
same with the adiabatic approximation to the wave functions, evaluate the
difference between those two expressions, expand in the regulator parameter
s (the divergent parts should cancel), and take the limits s, h → 0 to find
the finite remainder. Sounds easy, takes about forever.

The manipulations are not particularly difficult but are quite time-con-
suming, especially for the adiabatic part. Essentially, we substitute the adiabat-
ically expanded wave function (4.4)–(4.7) into (4.10) for ^too&, perform a
great many integrals, and operate on the result with the operator $2. Along
the way, we discard all terms of adiabatic order greater than four. The end
result is, for the adiabatic ^too&A ,

^too&A 5 2
T 2

o

4p2C

3 H2
Cm2

8f
(D 2 2F)21ln1C 1/2 ms

2f 2 1 g 1
3
22

2
Cm2

8f
(Ḋ 2 2Ḟ)1ln1C 1/2 ms

2f 2 1 g 1 12 2
f

96
(Ḋ2 1 DD̈ 1 D

???
)
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1
CFm2

8f
(D 2 2F)1ln1C 1/2 ms

2f 2 1 g 1 12 1
fF
96

(DḊ 1 D̈)

1
6F
s41

Cm2

2fs2 2
3C2m4

8f 3 1ln1C 1/2ms
2f 2 1 g 1

29
122

1
Cm2

8f
(2D2 1 Ḋ) 1

f
160

(D
???

1 D2Ḋ 1 4DD̈ 1 3Ḋ2 1 D4)

2
f

2240
(28DD̈ 1 21Ḋ2 1 126D2Ḋ 1 49D4)

1
847f

81,920
(D2Ḋ 1 D4) 2

379f
49,280

D4

1 F f
4s2 2

3Cm2

f 1ln1C 1/2 ms
2f 2 1 g 1

5
62GDF

2
Cm2

6f 1ln1C 1/2 ms
2f 2 1 g 1

4
32(4DF 1 3Ḟ) 2

Cm2

4f
DF

2
f

160
(19D2Ḋ 2 6DD̈ 1 3D4 1 6Ḋ2)

1 1Cm2

f 2 1
afC
2h6 2

m2

f
2

1
4

DfF2

3 F 1
s2 1

Cm2

2f 2 1ln1C 1/2 ms
2f 2 1 g 1

1
22 1

1
24

(D2 1 Ḋ) 2
1
48

D2

2
f 2

240Cm2 (D
???

1 6D2Ḋ 1 4DD̈ 1 3Ḋ2 1 D4)

1
f 2

1680Cm2 (28DD̈ 1 21Ḋ2 1 126D2Ḋ 1 49D4)

2
2541

12,280
f 2

Cm2 (D2Ḋ 1 D4) 1
379

18,480
f 2

Cm2 D4
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1
1
4 1ln1C 1/2 ms

2f 2 1 g 1 12DF 2
1
18

(4DF 1 3Ḟ)

1
1
6

DF 1
f 2

240Cm2 (19D2Ḋ 2 6DD̈ 1 3D4 1 6Ḋ2)GJ (4.12)

The exact solution of the wave equation (4.3) is

x 5
1

!k
e2ikh with k2

5 k2 1
Cm2

f 2 1
1
2

DF 2
1
2

Ḋ 2
1
4

D2 (4.13)

[ k2 1 d2

which, when inserted in equation (4.10), gives a properly regulated expression
for ^too&exact:

^too&exact 5
To

4

4p2C H f
4

ḋ21ln1ds
2 2 1 g 1 22 2

f
4

dd̈1ln1ds
2 2 1 g 1 12

2
fF
4

dḋ1ln1ds
2 2 1 g 1 12 2

fd2

2s2 2
3fd4

8 1ln1ds
2 2 1 g 1

11
162

2
6f
s4 1

15f d4

32
1 1afC

2h6 2
m2

f
1

Cm2

f 2 2
1
4

DfF2
3 F2

d2

2 1ln1ds
2 2 1 g 1 12 2

1
s2 1

d2

4G (4.14)

When we use these two expressions for ^too& to calculate the renormalized
energy tensor

^too&ren 5 lim
s→0

(^too&exact 2 ^too&A) (4.15)

terms quartically, quadratically, and logarithmically divergent for large s
exactly cancel, but infrared divergences are introduced. These turn out to be
artifacts of the subtraction procedure since the adiabatic expansion accurately
describes ultraviolet divergences, but is not uniformly asymptotic as k → 0.
Hence, the infrared divergences are spurious, arising out of the bad low-
frequency behavior of the adiabatic expansion (Fulling and Parker, 1974).
They may be safely discarded to yield the finite remainder
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^too&ren 5 To
2

4p2C H2
3f
8 1g 1

23
1621DF

2 2
4

1
f

96
(Ḋ2 1 DD̈ 1 D

???
)

2
fF
96

(DḊ 1 D̈) 2
f

160
(D

???
1 D2Ḋ 1 4DD̈ 1 3Ḋ2 1 D4)

1
f

2240
(28DD̈ 1 21Ḋ2 1 126D2Ḋ 1 49D4)

2
847f

81,920
(D2Ḋ 1 D4) 1

379f
49,280

D4

1 . f
160

(19D2Ḋ 2 6DD̈ 1 3D41 6Ḋ2) .
1 1afC

2h6 1
Cm2

f 2 2
m2

f
2

f
4

DF2F2
1
24

DF 2
1
2

(g 1 1)DF

2
1
48

(D2 1 2Ḋ) 1
1
18

(4DF 1 3Ḟ)G
1 (1 2 f )F 1

240
(D

???
1 6D2Ḋ 1 4DD̈ 1 3Ḋ2 1 D4)

2
1

1680
(28DD̈ 1 21Ḋ2 1 126D2Ḋ 1 49D4)

1
2541

12,280
(D2Ḋ 1 D4) 2

379
18,480

D4

2 . 1
240

(19D2Ḋ 2 6DD̈ 1 3D4 1 6Ḋ2) .GJ (4.16)

or, evaluated at early times,

^too&ren 5 To
2

4p2C H2
3f
8 1g 1

23
162 a4

h16 1
f

48 1 2
h4 2

4
h3 2

3
h22

2
fa
24 1 1

h5 1
1
h62 2

f
80 110

h4 2
16
h3 2

3
h22 2

f
560 156

h3 1
35
h42

2
847

10,240
f

h4 1
379
3080

f
h4 1 . f

10 1 3
h3 2

5
h42 .
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1 1afC
2h6 1

Cm2

f 2 2
m2

f
2

f
4

DF2F 1
12

1
h4 1 (g 1 1)

a
h4 1

1
18

a
h4G

1 (1 2 f )F2
1

120 1 3
h2 1

16
h3 1

20
h42 1

1
420 156

h3 1
35
h42 1

2541
1535

1
h4

2
379
1155

1
h4 2 . 1

15 1 3
h3 2

5
h42 .GJ (4.17)

5. EVOLUTION OF THE
FRIEDMANN–ROBERTSON–WALKER SCALE FACTOR

The evolution equation for a(t) is

ȧ2 5 21 1
L
3

a2 1
8p
3

(rc 1 rq)a2 (5.1)

where rc and rq represent the classical (background) and quantum (due to
f) energy densities. It happens that each term in the quantum energy tensor
(4.17) peaks rather sharply in the vicinity of the Planck time, mainly due to
our choice of Ro, exhibiting near impulse-like behavior. While this may
present a mechanism for singularity avoidance, it is occurring in a regime
in which we should properly include the effects of quantum gravity anyway.
The only term in (5.1) which survives significantly after the Planck time is
the second, cosmological, term and we therefore focus our attention on it. If
we begin at a few Planck times, it is quite large and is in fact by far the
dominant term in the backreaction equation.

The expression (3.22) for L is far too complicated to use in (5.1), but
we can get an idea of what is going on by dividing the problem up into
several time ranges in which various parts of L dominate. This division is
shown in Table I. Case (a) is not especially useful since, again, it is not really
valid much after the Planck time. Case (b) gives the inflationary solution

Table I. Approximate Forms and Ranges of Validity for L

L Range of h [t = (a*/2)h2]

(a) 3m2 exp(2a/h2) h & (a/m2)1/6

(b) 3a/h6 (a/m2)1/6 & h & (2a/m2)1/6

(c) 3–2 m2[1 2 exp(2a/h2)] h * (2a/m2)1/6
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a(t) 5 ao8 expF2
a*3

4 !a
tG (5.2)

where ao8 is set by the terminal value at the end of case (a). Three important
points should be noted about this solution. First, it is independent of the mass
of the scalar field. This is as expected since in the scalar field wave equation,
f appears in the denominator of the mass term, so at sufficiently early times
the field behaves as if it were massless. Furthermore, the same is true of any
coupling term in the wave equation—at sufficiently early times, any coupling
terms to other fields will be negligible in comparison to the derivative terms
of the wave equation, so the field behaves not only as if it were massless,
but as if it were free as well. Consequently, the inflationary solution (5.2)
will follow from any scalar field. It seems likely to us that it will follow
from any field at all, scalar or not, but this has not yet been proven.

Second, it inflates prodigiously. According to Fakir and Unruh (1990)
and Bradenberger (1985), a minimum of 60 or so e-fold increase in size is
required to solve all the problems (except the vanishing of L) which plague
classical cosmology. Since a* , 1057, we have certainly achieved that.

Third, though the inflation factor increases with decreasing Ro (so one
might think that doing away with f altogether would yield an infinite amount
of inflation), it is also true that the time frame during which the inflation occurs
simultaneously shrinks to zero. Thus, as the modification to the commutator
relation vanishes, so does the inflation.

In case (c), we expand the exponential to first order since times are
fairly late, and find the solution

a(t) 5 ao9 expF2
m
4

!aa*tG (5.3)

which shuts down smoothly as expected. Here, a9o is the value of a(t) at the
end of time period (b). The rate of decrease is mildly dependent on the mass
of the field, but is still dominated by a*. In this regime, rc begins to take over.

Taking the end of case (b) as roughly the end of the inflationary period,
we can estimate the value of the scalar field according to equation (2.12) by
simply plugging in the value of h. It is quite prodigious:

f , h
a

expF2
a

2h2G , 1
m1/2 (5.4)

where m is the mass of the scalar field in units of Planck masses. If we
assume f is the Higgs field and take, say, 1 TeV as a reasonable upper limit
on its mass, f ends up at the end of the inflationary period very far away
from anything resembling a low-temperature equilibrium value. Furthermore,
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during most of the inflationary period, f has behaved essentially as a free
particle. Any interaction term in the Klein–Gordon equation would be negligi-
bly small due to the presence of f elsewhere:

¹m("f ¹m)f 1
m2

"f
f 1 Vint[f] 5 0 (5.5)

Interactions with other fields become significant only at the end of the
inflationary period when f has already built up to an enormous value which
can then be shed through those other interactions as f rolls down to the
global minimum of its effective potential, thus reheating the universe. The
picture is not entirely unlike Linde’s (1983, 1985, 1986b, 1987) chaotic
inflationary model from this point on and in fact the value (5.4) of w is very
nearly what Linde requires as the starting point for his picture. Interestingly,
this actually works better for low-mass fields such as the Higgs than it would
for the immoderately large masses usually contemplated for hypothetical
inflaton fields. As we have already seen, the extent of the inflation is mass
independent so there is no penalty for considering a low-mass field.

6. SUMMARY

We hypothesized that there is a curvature dependence in curved-space
quantum field theory that cannot be deduced from simply extrapolating flat-
space quantum field theory. We then investigated one possible consequence
of this hypothesis. No other assumptions are needed in order to provide a
vast inflation, solving the usual retinue of cosmological problems. We also
managed automatically to rid the theory of the residual cosmological constant,
which usual inflationary theories cannot easily do. This was an unexpected
bonus from a choice made during the course of renormalization in the effective
action. We believe we made the most economical choice on physical grounds.
Finally, we suggested a model in which the universe creates its contents out
of its own expansion, based on the peculiar behavior of the field mode
solutions. Furthermore, since the field can be taken to be a real field, such
as the Higgs particle, and not some tailor-made inflaton field with no other
purpose, it is not necessary to concoct elaborate schemes to get rid of the
particles so that they are not observed in the current epoch.

There are several obvious areas for further investigation. One of the
most important questions addressed by inflationary models is the origin of
structure in the universe through the magnification of primordial density
fluctuations. Current theories are, however, hard pressed to account for the
extremely large structures recently observed (such as the so-called “Great
Wall”). Perhaps a version of our model will be more accommodating since
f-dependent fluctuations should be spread over a much broader region than
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is currently contemplated. The survival of all the normal modes of the field
may also play a role here.

Another question which should be addressed is the effect of f on higher
spin fields. Can inflation be provided by any field of any spin? This seems
likely, as it arises solely out of the uncertainty principle and would indeed
be an advance since inflation has heretofore been tied to a scalar field or
something which can be formally treated as such. It would also imply that
the vacuum contribution of all fields to the cosmological constant vanishes,
thus possibly solving this longstanding problem.

The theory in its present form, however, is only qualitatively realistic
since it is based on an unlikely choice for f. Again, this choice was made
on two grounds: it behaves in a manner qualitatively similar to a more realistic
choice (and so we have some confidence in the general tone of the results)
and it is analytically soluble. We believe the essential physical content will
be unchanged by a more realistic choice, but we wished to avoid for now
the complications of a numerical analysis. Consequently, this paper should
be viewed as a feasibility study, outlining the general shape of the physical
content and determining what technical problems arise. There seem to be no
insurmountable problems and the results are sufficiently interesting that fur-
ther study of a more realistic model is warranted.
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